Abstract

Transposable elements (TEs) and their reverse complementary sequence pairs (RCPs) are enriched around loci that produce circular RNAs (circRNAs) in plants. However, the function of these TE-RCP pairs in modulating circRNA expression remains elusive. Here, we identified 4609 circRNAs in poplar (Populus tomentosa) and showed that miniature inverted repeat transposable elements (MITEs)-RCPs were enriched in circRNA flanking regions. Moreover, we used expression quantitative trait nucleotide (eQTN) mapping to decipher the cis-regulatory role of MITEs. eQTN results showed that 14 single-nucleotide polymorphisms (SNPs) were significantly associated with Circ_0000408 and Circ_0003418 levels and the lead associated SNPs were located in MITE-RCP regions, indicating that MITE-RCP sequence variations affect exon circularization. Overexpression and knockdown analysis showed that Circ_0003418 positively modulated its parental gene, which encodes the RING-type E3 ligase XBAT32, and specifically increased the expression of the PtoXBAT32.5 transcript variant, which lacks the E3 ubiquitin ligase domain. Under heat stress, PtoXBAT32.5 expression was induced with up-regulation of Circ_0003418, resulting in increased production of ethylene and peroxidation of membrane lipids. Our findings thus reveal the cis-regulatory mechanism by which a MITE-RCP pair affects circRNA abundance in poplar and indicate that Circ_0003418 is a negative regulator of poplar heat tolerance via the ubiquitin-mediated protein modification pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call