Abstract

The sediment provenance influences the formation of the shale gas sweet-spot interval of the Upper Ordovician–Lower Silurian Wufeng–Longmaxi shale from the Yangtze Platform, South China. To identify the provenance, the mineralogy and geochemistry of the shale were investigated. The methods included optical microscopy analysis, X-ray diffraction testing, field-emission scanning electron imaging, and major and trace element analysis. The Wufeng–Longmaxi shale is mainly composed of quartz (avg. 39.94%), calcite (avg. 12.29%), dolomite (avg. 11.75%), and clay minerals (avg. 28.31%). The LM1 interval is the shale gas sweet-spot and has the highest contents of total quartz (avg. 62.1%, among which microcrystalline quartz accounts for 52.8% on average) and total organic carbon (avg. 4.6%). The relatively narrow range of TiO2–Zr variation and the close correlation between Th/Sc and Zr/Sc signify no obvious sorting and recycling of the sediment source rocks. Sedimentary sorting has a limited impact on the geochemical features of the shale. The relatively high value of ICV (index of compositional variability) (1.03–3.86) and the low value of CIA (chemical index of alteration values) (50.62–74.48) indicate immature sediment source rocks, probably undergoing weak to moderate chemical weathering. All samples have patterns of moderately enriched light rare-earth elements and flat heavy rare-earth elements with negative Eu anomalies (Eu/Eu* = 0.35–0.92) in chondrite-normalized diagrams. According to Th/Sc, Zr/Sc, La/Th, Zr/Al2O3, TiO2/Zr, Co/Th, SiO2/Al2O3, K2O/Na2O, and La/Sc, it can be inferred that the major sediment source rocks were acidic igneous rocks derived from the active continental margin and continental island arc. A limited terrigenous supply caused by the inactive tectonic setting is an alternative interpretation of the formation of the sweet-spot interval.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call