Abstract
The Tartai ultramafic-mafic massif is located in the central part of the East Siberian metallogenic (PGE-Cu-Ni) province (728-712 Ma), which constitutes part of the southern margin of the Siberian craton. This dunite-peridotite-pyroxenite-gabbro massif is the host to low-sulfide PGE-Cu-Ni mineralization. The massif was formed by fractional crystallization of picritic magmas and is composed of wehrlite, dunite, plagiowehrlite, and olivine melanogabbro. The composition of olivine varies from Fo89.9 in dunite to Fo83 in melanocratic olivine gabbro; clinopyroxene is esentially augite. Chrome-spinels crystallized at a low degree of oxidation and have a high iron content. Disseminated sulfide mineralization (pentlandite and heazlewoodite) with high PGE concentrations was identified in wehrlites. Pentlandite is enriched in Fe and Co and depleted in S. These features and the association pentlandite with heazlewoodite suggest that the sulfide mineralization was formed over a wide temperature range (600-400°C) at low sulfur activity (logfS2 from −16 to −9). PGM are represented by Ir-bearing sperrylite, Pd-Cu-Sb panning compounds of variable compositions, Pt-Fe-Cu and Pt-Cu alloys. The evolutionary trend of the ore system was from essentially Ni compositions at the early magmatic stage during formation of disseminated mineralization toward Cu-rich composition at the post-magmatic stage. The PGM assemblage from heavy concentrate haloes differs from bedrock-hosted mineralization in its wider variety of mineral species and the presence of refractory platinoids. Sperrylite from heavy concentrate haloes of the Tartai massif serves as a reliable prospecting guide for bedrock-hosted sulfide Cu-Ni deposits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have