Abstract

The Liwu stratiform copper deposit is located in the NW Jianglang dome, western China. Current studies mainly focus on the genetic type and mineralization of this deposit. Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features. Laser Raman analysis indicates that the ore-forming fluids is a H<sub>2</sub>O-NaCl-CH<sub>4</sub> (-CO<sub>2</sub>) system. Fluid inclusions microthermometry shows a homogenization temperature of 181–375°C and a salinity of 5.26%–16.99% for the disseminated-banded Cu-Zn mineralization; but a homogenization temperature of 142–343°C and a salinity of 5.41%–21.19% for the massive-veined Cu-Zn mineralization. These features suggest a medium–high temperature and a medium salinity for the ore-forming fluids. H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water, plus minor formation water. And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks. Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction; whereas that of the massive-veined mineralization was mainly correlated with fluid boiling. The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones. This study is beneficial to understand the stratiform copper deposit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call