Abstract
Siguiri is a world-class orogenic gold district hosted in the weakly metamorphosed Upper Birimian to Lower Tarkwa Group sedimentary rocks of the Siguiri Basin (Guinea). The district is characterised by a protracted deformation history associated with four main deformation events: D1S is a N-S compression; D2S is an E-W compression progressively evolving into an early-D3S transpression and then into a late-D3S NNW-SSE transtension and D4S is a NE-SW compression. Field observations, petrography and geochemistry at three key deposits of the Siguiri district (Bidini, Sintroko PB1 and Kosise) suggest a polyphase hydrothermal history that can be subdivided into four hydrothermal events. The first hydrothermal event was associated with the development of barren bedding-parallel and en-echelon V2S quartz-dominated-(pyrite) veins. The second hydrothermal event is characterised by the development of V3A pyrite-ankerite veins late during D3S. Laser ablation-ICP-MS data show that this vein set contains high gold contents of up to 43.3 ppm, in substitution in pyrite crystal lattice, representing a minor first gold mineralisation event. The third and most prominently developed hydrothermal event is late D3S and represents the second and principal gold mineralisation event. This mineralisation event led to two distinct mineralisation textures. The first texture is best exposed in the Kosise deposit and is characterised by gold-bearing quartz-ankerite-arsenopyrite conjugate V3B veins. Although the bulk of the gold is hosted in native gold grains in V3B veins, LA-ICP-MS analyses show that gold also substitutes in the arsenopyrite crystal lattice (up to 55.5 ppm). The second mineralisation texture is best expressed in the Sanu Tinti deposit and consists of disseminated barren pyrite hosted in a polymict conglomerate. The second and third hydrothermal events are both structurally controlled by a series of early-D3S N-S, NE-SW, WNW-ESE and E-W sub-vertical incipient structures expressed as fracture zones of higher V3S vein density. A composite geochemical cross section across fracture zones from the Kosise deposit indicates that gold mineralisation in the Siguiri district is associated with enrichments in Ag, Au, As, Bi, Co, Mo, (Sb), S, Te and W relative to background. Geochemical variations associated with the ore shoots in the Siguiri district are consistent with petrographic observations and highlight an albite-carbonate-sulphide-sericite alteration. The fourth and last hydrothermal event is associated with the development of a late penetrative S4S cleavage during D4S deformation, which overprints all pre-existing hydrothermal features and is associated with the deposition of free gold, chalcopyrite and galena along fractures in V3A pyrite and V3B pyrite and arsenopyrite. Mineralogical and geochemical footprints as well as timing of the gold-mineralising events in the Siguiri district, when compared with other deposits of the West African Craton, highlight the synchronicity of gold mineralisation in Siguiri (syn-D3S and syn-D4S events) with other similar events in this part of the craton, such as the early Au-Sb-Bi-(Te-W) mineralisation at the Morila deposit in Southeast Mali. Our results support the hypothesis that late Eburnean-age gold mineralisation in the Siguiri district and in the West African Craton as a whole was polyphase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.