Abstract

This paper investigates weathering pits at three granite sites located on mountain tops, in a former river bed, and on the coastline of an island, respectively, from north to south in eastern China and aims to characterize weathering pit formation in the above settings in terms of mineral weathering and elemental transport. In these settings, the main elements, and mineral groups in the debris in the weathering pits and the fragments of the rock surface directly adjacent to the pits were analyzed. The chemical index of alteration (CIA), the quartz/feldspar (Q/F) ratio and the Na/K (Na2O/K2O) ratio were applied to identify the chemical origin of the weathering pits and assess the difference in the chemical weathering processes of the weathering pits in the different settings; the mass transfer coefficient was used to measure the characteristics of element migration during weathering pit formation at the three sites. The result of CIA, Q/F, and Na/K analysis shows that debris in a weathering pit suffered from higher chemical weathering intensity than nearby rock surfaces, indicating that the weathering pits of the study sites originated from chemical weathering. However, the differences in the CIA values of weathering pits in different areas are only the result of different chemical weathering durations and cannot be used to identify the climate types of the areas. The calculation of element mass transfer indicates that only Na and K are continuously leached during the formation process of weathering pits regardless of whether in valleys, mountains or on the coast. Other elements may or may not be the external source for the formation of weathering pits resulting in different natural tendencies for element mass transfer in weathering pits. Seawater can also be a factor contributing to the different patterns of element migration in weathering pits in coastal and inland areas. In addition, the environment of river valleys is more conducive to weathering pit formation than mountain tops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call