Abstract

Abstract In blend simulation for metallurgical applications, the knowledge of the type and amount of mineral matter in coal and other additives, as well as their derivatives as a result of combustion is important in assessing the coke quality and blast furnace efficiency. X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques were used in assessing the mineral matter contents and oxides produced up on combustion of the following Nigerian coals: Afuze (AFZ), Garin-Maiganga (GMG), Lamza (LMZ), Shankodi-Jangwa (SKJ), and Chikila (CHK) in addition to a tar sand from Ondo (OTS). Coal samples from Afuze (AFZ) and Chikila (CHK) were found to contain quartz, hematite, and anhydride as the dominant minerals. The Garin-Maiganga coal sample (GMG) was found to contain quartz, magnetite, anhydride, and magnesite. Quartz and hematite were dominant in Lamza coal (LMZ), while Shankodi-Jangwa coal (SKJ) is associated with dolomite and quartz. The bitumen was found to contain quartz, kaolinite, and rutile. The XRF analysis revealed the presence of sixteen elemental oxides: the most abundant being silicon dioxide, ferric oxide, aluminium oxide, sulphur trioxide, calcium oxide, and titanium oxide. Amongst the coal samples, CHK, AFZ and GMG coals have low acidic/basic and basic/acidic ratios, which indicate that cokes originating from them may form the least slag with the best blast furnace efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.