Abstract

Gravity data have been frequently used in researching the subsurface to map the 3D geometry of the density structure, which is considered the basis for further interpretations, such as the estimation of exploration potential in mineral exploration. The gravity inversion, practically employed to map the density structure, can be achieved by different methods. The method based on Tikhonov regularization is the most commonly used among them. Usually, the subsurface is discretized into a set of cells or voxels. To recover a stable and reliable solution, constraints are introduced into the Tikhonov regularization. One constrained inversion introduces a quadratic penalty (L2 norm) into the inversion, which imposes smooth features on the recovered model. Another gravity inversion, known as sparse inversion, imposes compactness and sharp boundaries on the recovered density structure. Specifically, the L1 norm and L0 norm are favored for such a purpose. This work evaluates the merits of the gravity data inversion in cooperation with different model norms and their applicability in exploration potential estimation. Because these norms promote different features in the recovered models, the reconstructed 3D density structure reveals different geometric features of the ore deposit. We use two types of synthetic data for evaluating the performances of the inversion with different norms. Numerical results demonstrate that L0 norm-based inversion provides high-resolution recovered models and offers reliable estimates of exploration potential with minimal deviation from theoretical mass compared to inversions equipped with the other two norms. Finally, we use the gravity data collected over the iron ore deposit at the Dida mining area in Jilin province (Northeast China) for the application. It is estimated that the exploration potential of the iron ore deposits is about 3.2 million tons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.