Abstract

This article presents a conveyor belt fire classification model that allows for the determination of the most effective firefighting strategy. In addition, the effect of belt design parameters on the fire classification was determined. A methodology that involves the use of numerical simulations and artificial neural networks was implemented. An approach previously proposed for modeling fires over conveyor belts was used. With the objective of obtaining some required modeling input parameter and verifying the capacity of this approach to get realistic results, computational fluid dynamics model calibration and validation were carried out using experimental test results available in the literature. Results indicated that scenarios with belt positions closer to the mine roof and greater tunnel heights require a higher longitudinal air velocity to be attacked directly. Furthermore, the belt fire classification model provided by the artificial neural network had an accuracy around 95% when test scenarios were classified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.