Abstract

A new type of timber connection using densified wood dowels is being developed and tested. The procedure involves inserting these densified dowels into pre-drilled holes. As this connection technique is in its early stages, a unique design approach is necessary, considering the impact of temperature variations. The primary goal is to characterize the thermal behaviour of these connections under elevated temperatures. The study employs an experimental approach, complemented by numerical analysis, innovatively applying kinetic models, commonly used for investigating heat-related biomass characteristics, to wood. The method requires the use of thermogravimetric analysis to identify the kinetic parameters. The proposed pyrolysis kinetic model has been implemented in the Abaqus/Implicit code via a user subroutine UMATHT. The study concludes that using kinetic models enhances accuracy by considering mass loss, a key factor influencing thermal properties. Simulation successfully replicates temperature distribution and charred layer thickness, crucial for designing timber structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.