Abstract

We formulate multi-input multi-output proportional integral derivative controller design as an optimization problem that involves nonconvex quadratic matrix inequalities. We propose a simple method that replaces the nonconvex matrix inequalities with a linear matrix inequality restriction, and iterates to convergence. This method can be interpreted as a matrix extension of the convex–concave procedure, or as a particular majorization–minimization method. Convergence to a local minimum can be guaranteed. While we do not know that the resulting controller is globally optimal, the method works well in practice, and provides a simple automated method for tuning multi-input multi-output proportional integral derivative controllers. The method is readily extended in many ways, for example, to the design of more complex, structured controllers. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.