Abstract

In this paper we discuss and compare different signalling and routing methods for multiple-input multiple-output (MIMO) relay networks in terms of the network capacity, where every terminal is equipped with multiple antennas. Our study for signalling includes the two well known digital (decode and forward) relaying, analogue (amplify and forward) relaying, and a novel hybrid (filter, amplify and forward) relaying. We propose both optimal and suboptimal hybrid relaying schemes which avoid full decoding of the message at the relay. We show that they outperform analogue relaying and give similar performance to digital relaying, particularly when the relay has forward channel state information (CSI) or larger number of antennas than the source and destination. For the routing schemes designed for multiple relay channels, we use relay selection schemes to exploit the spatial diversity, which we call selection diversity of the networks. We propose both optimal and suboptimal relay selection schemes and show that their performance converges when a large number of antennas is deployed at each node in the network. We also compare relay selection routing with a space-time coded relay cooperation protocol and show the performance advantage of selection diversity over cooperative diversity in certain scenarios. Finally, we give a brief discussion on the application of another MIMO structure called single signal beamforming in the relay scenario. Its performance will be compared with that of spatial multiplexing

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.