Abstract

In this paper, the secrecy outage performance of an underlay cognitive decode-and-forward relay network over independent but not necessarily identical distributed Nakagami-m fading channels is investigated, in which the secondary user transmitter communicates with the secondary destination via relays, and an eavesdropper attempts to overhear the information. Based on whether the channel state information of the wiretap links is available or not, we analyze the secrecy outage performance with optimal relay selection (ORS) and suboptimal relay selection (SRS) schemes, and multiple relays combining scheme (MRC) scheme is considered for comparison purpose. The exact and asymptotic closed-form expressions for the secrecy outage probability with three different relay selection schemes are derived and verified by Monte-Carlo simulations. The numerical results illustrate that ORS scheme always outperforms SRS and MRC schemes, and SRS scheme is better than MRC scheme in the lower fading parameters scenario. Furthermore, through asymptotic analysis, we find that these three different schemes achieve the same secrecy diversity order, which is determined by the number of the relays, and the fading parameters of the links among the relays and the destination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call