Abstract

AbstractSubcellular compartmentalization of cells, a defining characteristic of eukaryotes, is fundamental for the fine tuning of internal processes and the responding to external stimuli. Reproducing and controlling such compartmentalized hierarchical organization, responsiveness, and communication is important toward understanding biological systems and applying them to smart materials. Herein, a cellular signal transduction strategy (triggered release from subcompartments) is leveraged to develop responsive, purely artificial, polymeric multicompartment assemblies. Incorporation of responsive nanoparticles—loaded with enzymatic substrate or ion channels—as subcompartments inside micrometer‐sized polymeric vesicles (polymersomes) allowed to conduct bioinspired signaling cascades. Response of these subcompartments to an externally added stimulus is achieved and studied by using confocal laser scanning microscopy (CLSM) coupled with in situ fluorescence correlation spectroscopy (FCS). Signal triggered activity of an enzymatic reaction is demonstrated in multicompartments through recombination of compartmentalized substrate and enzyme. In parallel, a two‐step signaling cascade is achieved by triggering the recruitment of ion channels from inner subcompartments to the vesicles' membrane, inducing ion permeability, mimicking endosome‐mediated insertion of internally stored channels. This design shows remarkable versatility, robustness, and controllability, demonstrating that multicompartment polymer‐based assemblies offer an ideal scaffold for the development of complex cell‐inspired responsive systems for applications in biosensing, catalysis, and medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.