Abstract
In recent years, Mixed Integer Linear Programming MILP has been successfully applied in searching for differential characteristics and linear approximations in block ciphers and has produced the significant results for some ciphers such as SIMON a family of lightweight and hardware-optimized block ciphers designed by NSA etc. However, in the literature, the MILP-based automatic search algorithm for differential characteristics and linear approximations is still infeasible for block ciphers such as ARX constructions. In this paper, we propose an MILP-based method for automatic search for differential characteristics and linear approximations in ARX ciphers. By researching the properties of differential characteristic and linear approximation of modular addition in ARX ciphers, we present a method to describe the differential characteristic and linear approximation with linear inequalities under the assumptions of independent inputs to the modular addition and independent rounds. We use this representation as an input to the publicly available MILP optimizer Gurobi to search for differential characteristics and linear approximations for ARX ciphers. As an illustration, we apply our method to Speck, a family of lightweight and software-optimized block ciphers designed by NSA, which results in the improved differential characteristics and linear approximations compared with the existing ones. Moreover, we provide the improved differential attacks on Speck48, Speck64, Speck96 and Speck128, which are the best attacks on them in terms of the number of rounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.