Abstract
The purpose of this research is to formulate and solve general flow shop scheduling problems with missing operations in which the objective function is to minimise the maximum completion time (Makespan). Missing operations assumption refers to the fact that at least one job does not visit one machine. We first propose a mixed integer linear programming (MILP) model for the problem that can generates non-permutation schedules. The MILP Model can be used to compute optimal solution for the small-sized problems. In addition, we have presented an adapted genetic algorithm that can be used to generate non-permutation schedule with relatively good solutions in short computational time. Considering of non-permutation schedules is necessary to pass some machine when we have missing operations assumption. To verify the effectiveness of the presented approach, computational experiments are performed on a set of well-known classical flow shop scheduling (without missing operation) benchmark problems. The results show that the performance of the approach is suitable and can reaches good-quality solutions within a reasonable computational time. Thus, we use the genetic algorithm to solve large-sized flow shop scheduling problems with missing operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.