Abstract

In biological systems, the cleavage of strong C–H bonds is often carried out by iron centers – such as the methane monooxygenase in methane hydroxylation – through dioxygen activation mechanisms. High valent species with [Fe2(μ-O)2] diamond cores are thought to act as the oxidizing moieties, but the synthesis of complexes that cleave strong C–H bonds efficiently has remained a challenge. We report here the conversion of a synthetic complex with a valence-delocalized [Fe3.5(μ-O)2Fe3.5]3+ diamond core (1) into a complex with a valence-localized [HO-FeIII-O-FeIV=O]2+ open core (4), which cleaves C–H bonds over million-fold faster. This activity enhancement results from three factors: the formation of a terminal oxoiron(IV) moiety, the conversion of the low-spin (S = 1) FeIV=O center to a high-spin (S = 2) center, and the concentration of the oxidizing capability to the active terminal oxoiron(IV) moiety. This suggests that similar isomerization strategies might be employed by nonheme diiron enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call