Abstract

Methanotrophic bacteria utilize methane monooxygenase (MMO) to carry out the first step in metabolizing methane. The soluble enzymes employ a hydroxylase component (sMMOH) with a nonheme diiron active site that activates O2 and generates a powerful oxidant capable of converting methane to methanol. It is proposed that the diiron(II) center in the reduced enzyme reacts with O2 to generate a diferric-peroxo intermediate called P that then undergoes O-O cleavage to convert into a diiron(IV) derivative called Q, which carries out methane hydroxylation. Most (but not all) of the spectroscopic data of Q accumulated by various groups to date favor the presence of an FeIV2(μ-O)2 unit with a diamond core. The Que lab has had a long-term interest in making synthetic analogs of iron enzyme intermediates. To this end, the first crystal structure of a complex with a FeIIIFeIV(μ-O)2 diamond core was reported in 1999, which exhibited an Fe⋯Fe distance of 2.683(1) Å. Now more than 20 years later, a complex with an FeIV2(μ-O)2 diamond core has been synthesized in sufficient purity to allow diffraction-quality crystals to be grown. Its crystal structure has been solved, revealing an Fe⋯Fe distance of 2.711(4) Å for comparison with structural data for related complexes with lower iron oxidation states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.