Abstract

The structures of fluorophosphane, PH2F, and chlorophosphane, PH2Cl, have been calculated ab initio at the SCF, MP2, CCSD, and CCSD(T) levels using a quadruple ζ polarized basis set. Equilibrium and ground state rotational constants as well as centrifugal distortion constants have been predicted for several isotopomers of PH2F and PH2Cl. Theoretical CCSD(T) geometries were also determined for the series of PHnX3-n (X = F, Cl; n = 0−3) molecules using a triple ζ polarized basis set. The millimeter-wave spectra of the short-lived molecules PH2F, PH2Cl, and their perdeuterated species were measured in the frequency range 100−470 GHz. For PH2F and PH2Cl, accurate ground state parameters have been obtained by a combined fit of the millimeter-wave data and the infrared ground state combination differences. The ro, rz, and re structures of PH2F and PH2Cl, as well as PH3, PCl3, and PHF2 have been determined. The experimental results are found in excellent agreement with their ab initio predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call