Abstract

We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7--0.1), which is a bright radio source behind the Galactic Center region. A 15'x15' area was mapped in the J=1--0 lines of CO, 13CO, and HCO+ with the Nobeyama Radio Observatory 45-m telescope. The VLA archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V_LSR=-14 km/s and +5 km/s. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado nebula. Modestly excited gas prefers the position of the Tornado "head" in the -14 km/s cloud, also suggesting the interaction. Virial analysis shows that the +5 km/s cloud is more tightly bound by self-gravity than the -14 km/s cloud. We propose a formation scenario for the Tornado Nebula; the +5 km/s cloud collided into the -14 km/s cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call