Abstract

This paper describes the design of millimeter-wave wide-band monolithic GaAs passive high electron-mobility transistor (HEMT) switches using the traveling-wave concept. This type of switch combined the off-state shunt transistors and series microstrip lines to form an artificial transmission line with 50-/spl Omega/ characteristic impedance. A 15-80-GHz single-pole double-throw (SPDT) switch in conjunction with quarter-wavelength impedance transformers demonstrates an insertion loss of less than 3.6 dB and an isolation of better than 25 dB. Another type of wide-band switch was designed by using a series HEMT switch to replace the quarter-wavelength transformer, and the operating band can be extended to dc. With this scheme, dc-80-GHz single-pole single-throw (SPST) and dc-60-GHz SPDT switches are also developed with compact chip size. From dc to 80 GHz, the insertion loss and isolation of the SPST switch are better than 3 and 24 dB, respectively. The SPDT switch has an insertion loss of better than 3 dB and an isolation of better than 25 dB from dc to 60 GHz. The analysis of circuit characteristics and design procedures are also included. It is concluded that the device periphery can be selected for the desired bandwidth, while the number of transistors is decided to achieve the isolation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.