Abstract
The effects of super high frequency (SHF) microwaves (34-78 GHz) on rates of spontaneous firing of the slowly adapting, stretch-receptor neurons of crayfish were studied. Initially, irradiation of continuously perfused, fluid-cooled preparations at power densities to 250 mW/cm2 caused a transient decrease in the rate of spontaneous firing (the dynamic response). Subsequently, with extinction of the SHF field, the rate of firing increased, finally stabilizing at pre-exposure levels (stationary phase). Rates of firing also increased when the receptor muscle was stretched, and they were inversely correlated with small, field-induced increases of temperature (approximately 1.5 degrees C). The response to SHF radiation did not depend on frequency if temperature of the medium was constant. No resonant peaks were found when the millimeter range of frequencies was scanned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.