Abstract

A new laboratory technique has been developed that utilizes gas-phase, direct-absorption millimeter and submillimeter spectroscopy to detect and identify desorbed species from interstellar and cometary ice analogues. Rotational spectroscopy is a powerful structure-specific technique for detecting isomers and other species possessing the same mass that are indistinguishable with mass spectrometry. Furthermore, the resultant laboratory spectra are directly comparable to observational data from far-infrared and millimeter telescopes. Here, we present the proof-of-concept measurements of the detection of thermally desorbed H2O, D2O, and CH3OH originating in a solid film created at low temperature (∼12 K). The surface binding energy of H2O is reported and compared to results from traditional techniques, including mass spectrometry and quartz-crystal microbalance measurements of mass loss. Lastly, we demonstrate that this technique can be used to derive thermodynamic values including the sublimation enthalpy and entropy of H2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.