Abstract

Coherent light sources have been demonstrated based on a wide range of nanostructures, however, little effort has been devoted to probing their underlying coherence properties. Here, we report long-range spatial coherence of lattice plasmon lasers constructed from a periodic array of gold nanoparticles and a liquid gain medium at room temperature. By combining spatial and temporal interferometry, we demonstrate millimeter-scale (∼1 mm) spatial coherence and picosecond (∼2 ps) temporal coherence. The long-range spatial coherence occurs even without the presence of strong coupling with the lattice plasmon mode extending over macroscopic distances in the lasing regime. This plasmonic lasing system thus provides a platform for understanding the emergence of long-range coherence from collections of nanoscale resonators and points toward novel types of distributed lasing sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.