Abstract

The continuing progress and integration levels in silicon technologies make complete end-user systems on a single chip possible. This massive level of integration makes modern multi-core chips all pervasive in domains ranging from weather forecasting, astronomical data analysis, and biological applications to consumer electronics and smart phones. NoCs have emerged as communication backbones to enable a high degree of integration in multi-core SoCs. Despite their advantages, an important performance limitation in traditional NoCs arises from planar metal interconnect-based multi-hop communications, wherein the data transfer between far-apart blocks causes high latency and power consumption. The latency, power consumption, and interconnect routing problems of NoCs can be simultaneously addressed by replacing multi-hop wired paths with high-bandwidth single-hop long-range wireless links. Recent investigations have established that the silicon integrated on-chip antenna operating in the millimeter wave range of a few tens to one hundred GHz is now a viable technology. Coupled with significant advances in mm-wave transceiver design, this opens up new opportunities for detailed investigations into wireless NoCs (WiNoCs). This talk will present methodologies and challenges for designing WiNoC architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.