Abstract

BackgroundFermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract. We reported previously that the fermentation of milk at constant pH 6 by L. helveticus R389 increased its content of peptide fractions, and the oral administration of the non-bacterial fraction (FMSpH6) to mice increased total secretory IgA in the intestinal lumen and enhanced the number of IgA and various cytokines producing cells as well as the secretion of IL-6 by small intestine epithelial cells. We also demonstrated that this FMSpH6 was effective for the prevention of Salmonella typhimurium infection in mice. In this work, we studied in mice the impact of the oral administration of the supernatant of milk fermented by L. helveticus R389 on the gut physiology by measuring parameters such as calcium channels and E-cadherin expression, the activation of the biological signal calcineurin and mast and goblet cells, as a way to determine some mechanisms involved in the immunomodulating effects of the milk fermentation products, observed in previous studies. We analyzed the impact of the supernatant of milk fermented by L. helveticus R389 at pH6-controlled on the expression of calcineurin and on the reinforcement of the ephitelial barrier, measuring parameters such as calcium channels and E-cadherin expression and in the reinforcement of the non-specific immunity determining mast cells and goblet cells associated to the gut.ResultsWe observed an enhanced expression of TRPV6 channels in the duodenum, indicating an improved capacity for dietary Ca2+ uptake. We demonstrated an enhanced expression of calcineurin in the small intestine, able to upregulate immune parameters such as IL-2 and TNF production, with an increase in the number of these cytokines secreting cells. We determined an increase in the number of mucosal mast cells and goblet cells, which would mean an improved state of mucosal surveillance at sites of infection.ConclusionThe oral administration of the supernatant of milk fermented by L. helveticus R389 enhanced the gut mucosal immunity by improving the mechanisms that reinforce the epithelial and non-specific barriers and the gut functioning at sites of infection, with an improvement in the expression of the enzyme calcineurin, an important signal in the network that activates the gut immune system. The results of this work contribute to revealing the mechanisms underlying the immunomodulation of the gut immune function by fermented milks with probiotic bacteria.

Highlights

  • Fermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract

  • We demonstrated that the non-bacterial fraction of this fermented milk was able to induce the proliferation of IgA+ B cells, and the increase in the number of IL-2+, IL-6+, IL-10+, TNFα+ and IFNγ+ producing cells, the secretion of IL-6 by small intestine epithelial cells and the luminal content of natural secretory IgA (S-IgA), without synthesis of antibodies directed against this fraction

  • Immunofluorescence tests for the study of the expression of E-cadherin and TRPV6 calcium channel, IL-2+ and TNF+ cells, CD4+ and CD8+ T lymphocytes In order to analyze the biological impact of the increased expression of calcineurin, we studied the number of IL2 and TNFα cytokine producing cells and the number of CD4+ and CD8+ T lymphocytes in the lamina propria of the small intestine

Read more

Summary

Introduction

Fermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract. We studied in mice the impact of the oral administration of the supernatant of milk fermented by L. helveticus R389 on the gut physiology by measuring parameters such as calcium channels and E-cadherin expression, the activation of the biological signal calcineurin and mast and goblet cells, as a way to determine some mechanisms involved in the immunomodulating effects of the milk fermentation products, observed in previous studies. We aimed at further characterizing a biological signal involved in the immunomodulating effects observed for this non-bacterial fraction, obtained from milk fermented by L. helveticus R 389 We analyzed whether this soluble fraction increased the expression of the enzyme calcineurin involved in the regulation of IL2 and TNFα cytokines production. We studied the impact of this supernatant on gut physiology using parameters such as the expression of calcium channels and E-cadherin and the effect of this fermented milk supernatant on mast cells and goblet cells associated with the gut, which are able to produce substances involved in intestinal pathogens clearance or mucus, respectively, both important to reinforce the non-specific intestinal barrier

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call