Abstract

Existing lip synchronization (lip-sync) methods generate accurately synchronized mouths and faces in a generated video. However, they still confront the problem of artifacts in regions of non-interest (RONI), e.g., background and other parts of a face, which decreases the overall visual quality. To solve these problems, we innovatively introduce diverse image inpainting to lip-sync generation. We propose Modulated Inpainting Lip-sync GAN (MILG), an audio-constraint inpainting network to predict synchronous mouths. MILG utilizes prior knowledge of RONI and audio sequences to predict lip shape instead of image generation, which can keep the RONI consistent. Specifically, we integrate modulated spatially probabilistic diversity normalization (MSPD Norm) in our inpainting network, which helps the network generate fine-grained diverse mouth movements guided by the continuous audio features. Furthermore, to lower the training overhead, we modify the contrastive loss in lip-sync to support small-batch-size and few-sample training. Extensive experiments demonstrate that our approach outperforms the existing state-of-the-art of image quality and authenticity while keeping lip-sync.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.