Abstract
Porous silicon is one of the most explored nanostructured materials in various biomedical applications owing to its remarkable properties. However, its inherent chemical instability mandates a robust surface modification procedure, and proper surface bioengineering is essential to ensure its effectiveness in the biomedical field. In this study, we introduce a one-pot functionalization strategy that simultaneously stabilizes porous silicon nanoparticles and decorates their surface with carbohydrates through hydrosilylation chemistry, combining mild temperatures and a Lewis acid catalyst. This approach yielded a surface functionalization degree of 300 μmol g-1 in just 4 hours at 60 °C, significantly reducing both the prolonged reaction times and high temperatures typically associated with conventional hydrosilylation. Furthermore, this advancement opens the way for utilizing thermolabile molecules useful for surface bioengineering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have