Abstract

AbstractA mild and robust heterogeneous palladium‐catalyzed CO bond cleavage of 2‐aryloxy‐1‐arylethanols using formic acid as reducing agent in air was developed. The cleaved products were isolated in 92–98 % yield; and by slightly varying the reaction conditions, a ketone, an alcohol, or an alkane can be generated in near‐quantitative yield. This reaction is applicable to cleaving the β‐O‐4′‐ether bond found in lignin polymers of different origin. The reaction was performed on a lignin polymer model to generate either the monomeric aryl ketone or alkane in a quantitative yield. Moderate depolymerization was achieved with native lignin at similar reaction conditions. Mechanistic studies under kinetic control indicate that an initial palladium‐catalyzed dehydrogenation of the alcohol is followed by insertion of palladium to an enol equivalent. A palladium–formato complex reductively cleaves the palladium–enolate complex to generate the ketone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call