Abstract

Environments undergo short-term and long-term changes due to natural or human-induced events. Animals differ in their ability to cope with such changes which can be related to their ecology. Changes in the environment often elicit avoidance reactions (neophobia) which protect animals from dangerous situations but can also inhibit exploration and familiarization with novel situations and thus, learning about new resources. Studies investigating the relationship between a species’ ecology and its neophobia have so far been restricted to comparing only a few species and mainly in captivity. The current study investigated neophobia reactions to experimentally-induced changes in the natural environment of six closely-related blackbird species (Icteridae), including two species represented by two distinct populations. For analyses, neophobic reactions (difference in number of birds feeding and time spent feeding with and without novel objects) were related to several measures of ecological plasticity and the migratory strategy (resident or migratory) of the population. Phylogenetic relationships were incorporated into the analysis. The degree of neophobia was related to migratory strategy with migrants expressing much higher neophobia (fewer birds feeding and for a shorter time with objects present) than residents. Furthermore, neophobia showed a relationship to diet breadth with fewer individuals of diet generalists than specialists returning when objects were present supporting the dangerous niche hypothesis. Residents may have evolved lower neophobia as costs of missing out on opportunities may be higher for residents than migrants as the former are restricted to a smaller area. Lower neophobia allows them approaching changes in the environment (e.g. novel objects) quickly, thereby securing access to resources. Additionally, residents have a greater familiarity with similar situations in the area than migrants and the latter may, therefore, initially stay behind resident species.

Highlights

  • Environments change predictably and unpredictably due to seasonal and catastrophic events, global warming and human impact

  • Neophobia delays getting in contact with valuable resources such as new food [3] and has been shown to delay learning [5,6] and problem-solving [7]

  • We investigated the relationship between ecological plasticity, migratory strategy and neophobia reactions in eight taxa of New World blackbirds (Icterids) in the wild to study how neophobia may operate under ecologically and socially realistic circumstances

Read more

Summary

Introduction

Environments change predictably and unpredictably due to seasonal and catastrophic events, global warming and human impact. Neophobia delays getting in contact with valuable resources such as new food [3] (though the actual inclusion of a new food item in the diet is more influenced by dietary conservatism [4] than neophobia) and has been shown to delay learning [5,6] and problem-solving [7]. It has been identified as part of a larger complex of correlated behaviors known as behavioral syndromes or personality traits [8,9]. Neophobia is known to differ between species (e.g. [10,2,6]) but despite the wide-ranging consequences of neophobia only few studies have ever investigated the underlying factors determining neophobia

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.