Abstract
We introduce an integrated wave-equation technique for migration velocity analysis (MVA) that consists of three steps: (1) forming the extended data, (2) approximating the correct transmitted wavefield, and (3) using wavefield tomography to update the velocity model. In the first step, the crosscorrelation imaging condition is relaxed to produce other nonzero-lag common image gathers (CIG) that, combined, form a common image cube (CIC). Slicing the CIC at different crosscorrelation lags forms a series of CIGs. Flattened events will occur in the CIGs at a lag other than the zero-lag when an incorrect velocity model is used in the migration. In the second step, for each event on the CIG, we pick the focusing depth and crosscorrelation lag at which it is flattest. We then model a Green’s function by seeding a source at the focusing depth using one-way wave equation modeling, then shift the modeled wavefield with the focusing crosscorrelation lag. This process is repeated for the other primary events at different lateral and vertical positions. The result is a set of modeled data whose wavefield approximates the wavefield that would have been generated if the correct velocity model had been used to simulate these gathers. We then apply wavefield tomography on these data-driven modeled data to update the velocity model. Our inversion scheme is based on wave-equation traveltime tomography that can update the velocity model in the presence of large velocity errors and a complex environment. Tests on synthetic and real 2D seismic data confirm the method’s effectiveness in building velocity models in complex structural areas that have large lateral velocity variations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have