Abstract

The migration of the schistosomula of Schistosoma mansoni labelled with [75Se]methionine, has been followed from the skin to the hepatic portal system. Parasites were detected in all mouse tissues by compressed organ autoradiography. Two separate experiments were performed to track parasites in normal mice, and in mice previously vaccinated with irradiated cercariae. In normal mice, the profile of numbers of autoradiographic foci detected in the skin, lungs, systemic and splanchnic organs was described with time post-infection. The distribution of parasites to systemic organs, following exit from the lungs, paralleled the fractional distribution of cardiac output. Accumulation of schistosomula in the hepatic portal system was complete by day 21 post-infection. Only 2-3 passes of parasites around the vascular system would be required to produce the hepatic portal population. No significant decline in total foci was detected in the first 12 days post-infection. The majority of parasite elimination appeared to occur in the lungs as late as day 21, with lesser proportions in the systemic organs and skin infection site. The pattern of migration in vaccinated mice was similar to that in normal animals. One difference observed was the longer duration of stay in the skin; however, the majority of parasites eventually reached the lungs. The systemic phase of migration occurred on a reduced scale, as did accumulation of parasites in the hepatic portal system. The decline in total foci in vaccinated mice commenced approximately 7 days earlier than in normal mice and proceeded to a lower end-point. Again the majority of parasite elimination appeared to occur in the lungs with lesser proportions in the systemic organs and skin infection site. It is suggested that resistance to reinfection in vaccinated mice has two additive components which combine to retard the migration of schistosomula within the vasculature, preventing them from reaching the hepatic protal system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.