Abstract

SummaryThe pattern of recovery of schistosomula from the lungs of mice, hamsters and rats is described following normal percutaneous infection via the abdominal skin. Peak numbers were found in hamsters and rats on day 5 and in mice on day 6 post-exposure. Schistosomula were recovered from the lungs up to approximately day 20 post-exposure in all 3 species. None were found in pleural washings and only 2 were recovered following mincing and incubation of host diaphragms. The pattern of recovery of schistosomula from the lungs of mice was also described following the injection of a pulse of parasites into the tail vein. Approximately 54% of these injected schistosomula eventually reached maturity in the hepatic portal system. The ability of schistosomula to migrate and mature following their injection into unusual locations was tested. Small numbers reached maturity in the hepatic portal system following injection into the pleural cavity or subcutaneously, more when injected intra-peritoneally and largest numbers following intravenous injection. Small numbers of schistosomula were recovered by mincing and incubation of systemic organs such as the kidney and spleen. Schistosomula injected into the left ventricle of hamsters were able to migrate via the systemic organs to the lungs and 47% eventually matured in the hepatic portal system. The pattern of schistosomulum accumulation in the hepatic portal system of mice, hamsters and rats is described. Following normal percutaneous infection, schistosomula were first detected in this site from day 6 to day 9 depending on the host species. In mice, migration was complete around day 20 but continued in hamsters up to day 40 post-exposure. Following injection of schistosomula into the tail veins of mice, the first arrivals in the hepatic portal system were detected 12 h later and were found to lose their ability to migrate shortly after arrival. However, a proportion of lung schistosomula injected directly into the hepatic portal system were able to traverse hepatic sinusoids and reach the lungs. It was concluded that the route of migration of schistosomula from lungs to liver was entirely intravascular, with potentially several passages round the pulmonary-systemic circulation, before chance entry into arteries leading to the hepatic portal system. The proportion of schistosomula exiting from the pulmonary-systemic circuit was estimated as 0·14/day. A computer simulation produced values of 11 h and 5 h for the duration of migration through pulmonary and systemic capillary beds. The time for 1 complete circuit would thus be 16 h and the proportion of schistosomula exiting per circuit would be 0·095. This approximates to the proportion of cardiac output going to splanchnic organs in the resting rat (0·128). The narrowness of hepatic sinusoids may be one factor contributing to the sequestration of schistosomula in the hepatic portal system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call