Abstract
The external electric field enables separation and transport of droplets effectively in microfluidic devices. Herein, a volume-of-fluid (VOF) + level-set (LS) + smoothed physical parameters (SPP) method associated with the dynamically adaptive grid technique is extended to simulate three-dimensional leaky dielectric droplets in the electric field. The effects of electric and hydrodynamic forces on droplet behaviors are investigated. It is demonstrated that the electric force could act toward the outside or inside of a droplet and produce different droplet deformations. For the dielectrophoretic migration of droplets in the nonuniform electric field, the electric force has a dominant effect. It is found that when the electric conductivity ratio is greater than 1, an unbalanced electric force toward a stronger electric field is generated, bringing about the migration toward a stronger electric field. In contrast, when the electric conductivity ratio is smaller than 1, the unbalanced electric force direction is reversed and the droplet migrates toward a weaker electric field. The hydrodynamic force produces little promotion or hindrance to droplet migration. A greater permittivity ratio usually produces greater electric force and migration velocity. The droplet migrates along one direction in a symmetric nonuniform electric field but tends to migrate along the normal direction of electric potential profiles in an asymmetric nonuniform electric field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.