Abstract

Geological CO2 sequestration (GCS) is one of the most promising technologies for mitigating greenhouse gas emission into the atmosphere. In GCS operations, residual trapping is the most favorable form of a trapping mechanism because of its storage security and capacity. In this study, the effects of cyclic injection of CO2-water on the immiscible displacement and residual trapping in pore networks were examined. For the purpose, a series of injection experiments with five sets of drainage-imbibition cycles were performed using 2D transparent micromodels and a pair of proxy fluids, n-hexane, and deionized water. The multiphase flow and immiscible displacement phenomena during drainage and imbibition processes in pore networks were visually observed, and the temporal and spatial changes in distribution and saturation of the two immiscible fluids were quantitatively estimated at the pore scale using image analysis techniques. The results showed that the mobile region of invading fluids decreased asymptotically as the randomly diverged flow paths gradually converged into less ramified ones over multiple cycles. Such decrease was accompanied by a gradual increase of the immobile region, which consists of tiny blobs and clusters of immiscible fluids. The immobile region expanded as streams previously formed by the insertion of one fluid dispersed into numerous isolated, small-scale blobs as the other fluid was newly injected. These processes repeated until the immobile region approached the main flow channels. The observations and analyses in this study implied that the application of cyclic injection in GCS operations may be used to store large-scale CO2 volume in small-scale dispersed forms, which may significantly improve the effectiveness and security of geological CO2 sequestration.

Highlights

  • Geological CO2 sequestration (GCS) is one of the most promising technologies for mitigating greenhouse gas emission into the atmosphere

  • This study used a set of immiscible proxy fluids, n-hexane and deionized water, and 2D transparent micromodels to investigate the effects of cyclic injection of CO2 and porewater into deep geological formations on the migration and residual trapping of CO2 stored in geological carbon sequestration operations

  • Geofluids observations and quantitative analysis in this experimental study are as follows: (i) As cyclic injection of hexane and water continued, the hexane saturation repeatedly increased during drainage cycles and decreased during imbibition cycles, but the differences gradually diminished and remained constant at later cycles (ii) The variations in steady-state hexane saturation at drainage cycles showed a pattern of asymptotic decrease

Read more

Summary

Introduction

Geological CO2 sequestration (GCS) is one of the most promising technologies for mitigating greenhouse gas emission into the atmosphere. It involves collecting CO2 from various point sources such as power plants, refineries, and industrial plants at a large scale and storing it in deep geological formations such as depleted oil/gas fields, coal beds, or saline aquifers [1,2,3]. Once CO2 is injected into porous strata, it can be securely stored for a geological time scale through various trapping mechanisms, which include structural trapping due to blockage by impermeable caprocks for an upward buoyant CO2 plume, residual trapping by isolating CO2 in pore spaces by capillary forces or surrounding immiscible bubbles, solubility trapping due to dissolution of free-phase CO2 into porewater, and mineral trapping due to geochemical binding of dissolved carbonate species to rock formations [2, 4, 5].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.