Abstract
The migration and nucleation of He atoms at three typical (110) twist grain boundaries (TGBs): the low-angle grain boundary (LAGB), the ordinary high-angle grain boundary (HAGB) and the Σ3 TGB in W are investigated using molecular dynamics simulations. The presence of TGBs can absorb He atoms from bulk and impede the growth of He bubbles. Moreover, different grain boundary (GB) structures behave differently when interacting with He atoms. The LAGB can control the He distribution on the GB plane through its screw dislocation network, suggesting a promising approach for design of radiation tolerant materials. The ordinary HAGB presents a strong trap effect due to its disordered GB structure, which may induce a large He retention at the GB and embrittlement. The Σ3 TGB can provide a diffusion path for He atoms, although the diffusion rate is not as fast as it in bulk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.