Abstract

Dendritic cells (DCs) are professional APCs equipped with MHC-restricted Ags, costimulations, and cytokines that effectively prime and differentiate naive T cells into distinct functional subsets. The immune signals that DCs carry reflect the route of Ag uptake and the innate stimuli they received. In the mucosal tissues, owing to the great variety of foreign Ags and inflammatory cues, DCs are predominantly activated and migratory. In the small intestine, CD4 Th17 cells are abundant and have been shown to be regulated by DCs and macrophages. Using a mouse commensal bacteria experimental model, we identified that the early priming step of commensal-driven Th17 cells is controlled by bona fide Zbtb46-expressing DCs. CCR7-dependent migration of type 2 DCs (DC2s) from the small intestine to the mesenteric lymph nodes (MLNs) is essential for the activation of naive CD4 T cells. The migratory DC2 population in the MLNs is almost exclusively Esam+ cells. Single-cell RNA sequencing highlighted the abundance of costimulatory markers (CD40 and OX40) and chemokines (Ccl22 and Cxcl16) on MLN migratory DCs. Further resolution of MLN migratory DC2s revealed that the Th17-polarizing cytokine IL-6 colocalizes with DC2s expressing CD40, Ccl17, and Ccl22. Thus, early Th17 cell differentiation is initiated by a small subset of migratory DC2s in the gut-draining lymph nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call