Abstract

To determine if migrating action potential complexes (MAPCs) are a feature of normal motility, Hooded-Lister rats (100-150 g) were surgically prepared with three pairs of bipolar jejunal electrodes spaced 2.5 cm apart and with a jejunostomy tube for motility recording. Animals were studied conscious and unrestrained on postoperative day 14 after an 18-h fast. Intestinal myoelectric and motor activity was recorded for a 1-h interval in 24 animals that continued to fast and in 12 animals that were allowed to feed for 10 min. Fasting rats had a jejunal slow wave frequency of 32 +/- 2 contractions/min which did not differ significantly after feeding. Migrating myoelectric complexes (MMC) were clearly identified in all fasting animals and had a cycle period of 10.0 +/- 3.6 min. MAPCs were seen during phase II in 83% of MMCs and had an average distribution of 4.2 +/- 3.9/MMC. Feeding abolished the MMC and initiated a continuous irregular pattern of electrical spiking and associated contractile activity. Migrating action potential complexes were seen after feeding with a frequency of 1.8 +/- 0.4/min. It is concluded that MAPCs are a common feature of normal interdigestive phase II and also of postprandial jejunal motility in the rat. This supports the hypothesis that the MAPC is a basic propulsive motor pattern intrinsic to normal intestinal function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.