Abstract
Three 2D prestack depth migration techniques using split-step extrapolation operators were developed and tested on seismic data sorted into common shot gathers. In the first method, which we name simultaneous split-step migration (SS-S), the migration procedure is carried out simultaneously for the sources and receivers. The recorded receiver data are depropagated in depth and the source wavefield is downward propagated using the split-step operators for both. The final depth section is achieved by summing all the frequencies of interest after the correlation of the propagated and depropagated wavefields, for each depth level and by the sum of all migrated shot gathers. To decrease the computational time of the SS-S method, we can calculate the source wavefield's through a finite difference solution of the eikonal equation. This second method we call the hybrid split-step migration method (SS-H). In the third migration method, we combine the SS-S with the PSPI method. In this case the wavefields are depropagated using split-step operators for different velocities and then interpolated as in the PSPI method. We called this method PSPI-SS. The choice of the split-step operator for migration is mainly due to its easy implementation, high accuracy and robustness even in situations with very strong lateral velocity variation. The results we present in this work were obtained using the Marmousi data and also the SEG-EAGE salt model, which present very high geologic complexity. The results obtained with the three differentes methods were compared and all show satisfactory images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.