Abstract
The obscured Thomas precessionof the special theory of relativity (STR) has been soared into prominence by exposing the mathematical structure, called a gyrogroup,to which it gives rise [A. A. Ungar, Amer. J. Phys.59,824 (1991)], and the role that it plays in the study of Lorentz groups [A. A. Ungar, Amer. J. Phys.60,815 (1992); A. A. Ungar, J. Math. Phys.35,1408 (1994); A. A. Ungar, J. Math. Phys.35,1881 (1994)]. Thomas gyrationresults from the abstraction of Thomas precession.As such, its study sheds light on relativistic velocity spaces and their symmetries which are concealed in Thomas precession. In order to uncover new properties of relativistic gyrogroups, we employ in this article the group theoretic concepts of divisible groupsand two-torsion free groupsto construct midpointsin gyrogroups. Systems of successive midpoints then describe straight gyrolinesand suggest a new, natural distance function that involves a Thomas gyration. These, in turn, reveal a new, interesting geometry that underlies relativistic velocity spaces. In this resulting gyrogeometrythe straight gyrolines form geodesics under a distance function which turns out to be the Poincare hyperbolic distance function relaxed by a Thomas gyration. These geodesics do obey the parallel axiom of Euclidean geometry. Ironically, (i) attempts to understand the parallel postulate of Euclidean geometry gave rise to hyperbolic geometry in which the parallel postulate disappears;(ii) hyperbolic geometry gave rise to Einstein's STR; (iii) Einstein's STR established the bizarre and counterintuitive relativistic effect called Thomas precession, the abstraction of which is called Thomas gyration; and (iv) Thomas gyration now repairs in this article the Poincare distance function of hyperbolic geometry to the point where the parallel postulate reappears.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have