Abstract

Middle latency responses (MLRs) in the 10–100 msec latency range, evoked by click stimuli, were studied in 14 adult volunteer subjects during sleep-wakefulness to determine whether such changes in state were reflected by any MLR component. Evoked potentials were collected in 500 trial averages during continuos presentation of 1/sec clicks during initial awake recordings and thereafter during a 2 h afternoon nap or all-night sleep session. Continuously recorded EEG, EOG and EMG were scored for wakefulness, stages 2–4 of slow wave sleep (SWS), and rapid eye movement (REM) sleep during each evoked potential epoch. The major components included in this study and their latency ranges, as determined by peak latency measurements from the awake records, were: ABR V, 5–8 msec, Pa, 30–40 msec, Nb, 45–55 msec, and P1, 55–80 msec. In agreement with previous reports, ABR V and Pa showed no amplitude changes from wakefulness to either SWS or REM. Not previously reported, however, was the dramatic decrease and disappearance of P1 during SWS and its reappearance during REM to an amplitude similar to that during wakefulness. This unique linkage between a particular evoked potential component and sleep-wakefulness indicates that its generator system must be functionally related to states of arousal. Relevant data from the cat model suggest that the generator substrate for P1 may be within the ascending reticular activating system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.