Abstract
Middle latency responses (MLRs) in the 10–100 msec latency range, evoked by click stimuli, were studied in 8 adult cats during sleep-wakefulness to determine whether such changes in state were reflected by any MLR component. In particular, we wanted to determine whether the 20–22 msec positivity recorded at the vertex, ‘wave A,’ shown in previous studies to reflect a generator substrate within the ascending reticular formation, was tightly linked to changes in sleep-wakefulness, as reported for single neurons in the ascending reticular activating system. Evoked potentials were collected in 100 trial averages during continuous presentation of 1/sec clicks during initial awake recordings and thereafter during all-night sleep sessions. Continuously recorded EEG, EOG and EMG were scored for wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep during each evoked potential epoch. Recordings were obtained from electrodes implanted at the vertex and overlying the primary auditory cortex referenced to frontal sinus or to neck. In agreement with others, components of the auditory brain-stem response and the 12 msec primary cortical response showed no change in amplitude from wakefulness to either SWS or REM. Only wave A, among the components evaluated in the 1–100 msec range, decreased and disappeared during SWS and dramatically reappeared during REM to an amplitude equal to that during wakefulness. These data lend particular support to a functional relation between wave A and the ascending reticular activating system and suggest that this potential may provide a unique and dynamic probe of tonic brain activity. Moreover, this animal model provides a hypothetical basis for expecting a similar surface recorded potential in the human, a potential which has consequently been discovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electroencephalography and Clinical Neurophysiology/ Evoked Potentials Section
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.