Abstract

We fabricated a heavily Bi-doped (xBi≈2×1019cm−3) PbTe p–n homojunction diode that detects mid-infrared wavelengths by the temperature difference method (TDM) under controlled vapor pressure (CVP) liquid phase epitaxy (LPE). The photocurrent density produced by the heavily Bi-doped diode sample is approximately 20 times and 3 times greater than that produced by an undoped and heavily In-doped sample, respectively. By varying the ambient temperature from 15K to 225K, the detectable wavelength is tunable from 6.18μm to 4.20μm. The peak shift of the detectable wavelength is shorter in the heavily Bi-doped sample than in the undoped sample, consistent with our previously proposed model, in which Bi–Bi nearest donor–acceptor pairs are formed in the heavily Bi-doped PbTe liquid phase epitaxial layer. Current–voltage (I–V) measurements of the heavily Bi-doped diode sample under infrared exposure at 77K indicated a likely leak in the dark current, arising from the deeper levels. From the dark I–V measurements, the activation energy of the deep level was estimated as 0.067eV, close to the energy of the deep Tl-doped PbTe acceptor layer. We conclude that the deep level originates from the Tl-doped p-type epitaxial layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.