Abstract

Concentration-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is implemented for the first time on a continuous gas-flow pinhole supersonic expansion discharge source for the study of cooled molecular ions. The instrument utilizes a continuous-wave optical parametric oscillator easily tunable from 2.5 to 3.9 μm and demonstrates a noise equivalent absorption of ∼1 × 10(-9) cm(-1). The effectiveness of concentration-modulated NICE-OHMS is tested through the acquisition of transitions in the ν1 fundamental band of HN2 (+) centered near 3234 cm(-1), with a signal-to-noise of ∼40 obtained for the strongest transitions. The technique is used to characterize the cooling abilities of the supersonic expansion discharge source itself, and a Boltzmann analysis determines a rotational temperature of ∼29 K for low rotational states of HN2 (+). Further improvements are discussed that will enable concentration-modulated NICE-OHMS to reach its full potential for the detection of molecular ions formed in supersonic expansion discharges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.