Abstract
The detection sensitivity of phase-modulated techniques such as frequency-modulation spectroscopy (FMS) and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is often limited by etalon background signals. It has previously been shown that the impact of etalons can be reduced by the use of etalon-immune distances (EIDs), i.e., by separating the surfaces that give rise to etalons by a distance of q·Lm, where Lm is given by c/2nνm, where, in turn, n and νm are the index of refraction between the components that make up the etalon (thus most often that of air) and the modulation frequency, respectively, and where q is an integer (i.e., 1, 2, 3,…) or half-integer (i.e., 1/2, 1, 3/2,…) for the dispersion and absorption modes of detection, respectively. An etalon created by surfaces separated by an EID will evade detection and thereby not contribute to any background signal. The concept of EIDs in FMS and NICE-OHMS is in this work demonstrated, scrutinized, and discussed in some detail. It is shown that the influence of EIDs on the absorption and dispersion modes of detection is significantly different; signals detected at the dispersion phase are considerably less sensitive to deviations from exact EID conditions than those detected at the absorption phase. For example, the FM background signal from an etalon whose length deviates from an EID by 2.5% of Lm (e.g., by 1 cm for an Lm of 40 cm), detected in dispersion, is only 9% of that in absorption. This makes the former mode of detection the preferred one whenever a sturdy immunity against etalons is needed or when optical components with parallel surfaces (e.g., lenses, polarizers, or beam splitters) are used. The impact of the concept of EIDs on NICE-OHMS is demonstrated by the use of Allan–Werle plots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.