Abstract
This study examined whether combinations of middle latency sensory evoked potential components and late components, possibly indicative of cognitive processing, can discriminate between three sample groups; 18 adults (20–55 years), 25 typical children (5–10 years) and 28 children with sensory processing disorders (SPD) (5–12 years). Electroencephalography (EEG) recordings were made while participants heard random presentations of two auditory stimuli (1 and 3 kHz) each at two intensities (50 and 70 dB). Amplitude and latency measurements were obtained for the N1, P2, N2, and P3 components from the averaged event-related potential (ERP) for each of the four auditory stimuli. Discriminant analyses revealed two functions, one which described the relationship of the components on SPD deficit continuum and one which described the relationship of these components on a developmental continuum. Together, these two functions correctly classified 90.5% of the participants as to their group membership. These results are discussed in relation to neurodevelopmental theories.
Highlights
Electroencephalography (EEG) and event-related potentials (ERPs) provide an important bridge in studying the relationship between behavioral performance and brain structure and function (Polich, 1993)
Visual inspection of these ERPs illustrate that the adult group displayed an organized pattern of brain activity sensitive to changes in frequency and intensity of the stimuli, while typical children demonstrated a less organization pattern as compared to the adults
Sensory evoked potential components were represented by the peakto-peak measure of P2 as it was derived as the peak amplitude of N1 minus the amplitude of P2
Summary
Electroencephalography (EEG) and event-related potentials (ERPs) provide an important bridge in studying the relationship between behavioral performance and brain structure and function (Polich, 1993). Event-related potentials reveal that when the human brain processes a simple sensory stimulus in isolation of decision making, i.e., a passive experience, much of the brain’s response to the stimulus occurs in the early (e.g., 0–20 ms) to middle latency (20–100 ms) periods following the stimulus, with little activity occurring after 250 ms following the stimulus presentation (for an example, see the classic study of Ponton et al, 2000). When the human brain processes a more complex event, such as in a decision making task, ERPs reveal that brain processing occurs for longer periods following the event Often in these paradigms the brain processing continues past 250 ms following the stimulus with the observed activity referred to as late latency components. One purpose of this study was to determine if the examination of both the middle and late ERP components in auditory ERPs would better characterize differences between adults, typically developing children and children with sensory processing disorders (SPD) than just examining middle latency components alone
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.