Abstract

Event-related potentials (ERPs) evoked by key stimuli informing a subject about the forthcoming recognition of the global or local level of a hierarchical test figure were analyzed in 7-year-old children with different levels of maturity of the regulatory brain systems. Differences in both the initial ERP components P1, N1, and P2 (which reflect the analysis of the sensory characteristics and significance of a key stimulus) and the late components N3, Pc, and Nc (which reflect the preparation for the recognition of a subsequent test figure) were found. It was shown that, in children with frontal-thalamic regulatory system immaturity (FTRSI), the amplitude of the ERP component N1 is decreased in the caudal areas. In children with an immature bottom-up activation system, a decrease in the amplitude of initial ERP components in the caudal areas was observed in a broader time interval in components P1, N1, and P2. As compared to the control groups of children, in children with immature frontal-thalamic structures, components N3, Pc, and Nc were different in both the caudal and precentral areas. In children with immature lower brainstem activation structures, the late ERP components were different, predominantly, in the parietal and temporo-parieto-occipital areas. Comparison of ERPs in response to global and local key stimuli in children of the control group demonstrated a clear-cut temporal and topographical organization in the period of preparation for subsequent recognition of a prescribed level of the test stimulus: the earlier preparation stages were associated with component N3 in the parietal and temporo-parieto-occipital areas, whereas later stages were associated with Pc changes in the frontal areas. In children with FTRSI, changes in the late components in the caudal areas were poorly expressed and their topographical organization (characteristic of the control group) was absent; the involvement of the frontal areas in the late stages of the key stimulus analysis was restricted. These findings may give grounds to suggest the significance of the frontal-thalamic system in the organization of the response to an expected stimulus. In children with immature lower brainstem activation structures, the type of the key stimulus was reflected in the late ERP components in a diffuse way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call