Abstract

Midazolam and morphine are often used in pediatric intensive care unit (ICU) for analgesia and sedation. However, how these two drugs interact behaviorally remains unclear. Here, we examined whether (1) co-administration of midazolam with morphine would exacerbate morphine tolerance and morphine-induced hyperactive behaviors, and (2) protein kinase C (PKC) would contribute to these behavioral changes. Male rats of 3–4 weeks old were exposed to a hindpaw burn injury. In Experiment 1, burn-injured young rats received once daily saline or morphine (10mg/kg, subcutaneous, s.c.), followed 30min later by either saline or midazolam (2mg/kg, intraperitoneal, i.p.), for 14 days beginning 3 days after burn injury. In Experiment 2, young rats with burn injury were administered with morphine (10mg/kg, s.c.), midazolam (2mg/kg, i.p.), and chelerythrine chloride (a non-specific PKC inhibitor, 10nmol, intrathecal) for 14 days. For both experiments, cumulative morphine anti-nociceptive dose–response (ED50) was tested and hyperactive behaviors such as jumping and scratching were recorded. Following 2 weeks of each treatment, ED50 dose was significantly increased in rats receiving morphine alone as compared with rats receiving saline or midazolam alone. The ED50 dose was further increased in rats receiving both morphine and midazolam. Co-administration of morphine and midazolam also exacerbated morphine-induced hyperactive behaviors. Expression of the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor and PKCγ in the spinal cord dorsal horn (immunohistochemistry; Western blot) was upregulated in burn-injured young rats receiving morphine alone or in combination with midazolam, and chelerythrine prevented the development of morphine tolerance. These results indicate that midazolam exacerbated morphine tolerance through a spinal NMDA/PKC-mediated mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.