Abstract

Biocemented soil columns were created at a reduced scale (mid-scale) using enzyme-induced carbonate precipitation (EICP) as a prelude to field scale deployment. Approximately 0.3 m diameter × 0.75 m long columns were created using a tube-à-manchette grouting technique in 0.6 m × 0.6 m × 1.2 m boxes filled with a dry washed quarry sand. Treatment solution composition and treatment protocol, including number of cycles of treatment and time interval between cycles, were established based upon laboratory testing. The urease enzyme used in the treatment solution was extracted from jack beans in a just-in-time manner on site. The biocemented soil columns were characterized in situ using shear wave velocity, needle penetrometer and pocket penetrometer testing, dimensional measurements, and by unconfined compression strength (UCS) and carbonate content measurements on specimens recovered from the columns. The in situ measurements indicated the target UCS of 500 kPa was achieved. However, the UCS tests on recovered specimens had inconsistent results, which may be attributed to sample disturbance. Overall, the results demonstrate that EICP is a viable method for creating biocemented soil columns for ground improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.