Abstract

We study the temperature stability of stimulated emission (SE) in HgCdTe/CdHgTe quantum well (QW) heterostructures emitting in the mid-infrared range at wavelengths 7–13 μm. For a series of samples with different band gap energies, maximum operating temperatures at which SE could be achieved are shown to follow closely the characteristic Auger threshold energies derived from the band spectra of the respective QWs. We demonstrate that realization of binary HgTe QWs should provide at least twofold increase in Auger threshold energy compared to the QWs studied (10% Cd content HgCdTe). Thus, one can expect further suppression of non-radiative Auger processes and corresponding increase in operating temperature, the effect being stronger for narrow band gap QWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call